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1. Mass in a tube

A tube of mass M and length ℓ is free to swing around a pivot at its left end. A mass m is
positioned inside the (frictionless) tube at this point. The tube is held horizontal and then
released (see Fig. 1). Let θ be the angle of the tube regarding the horizontal, and x be the
distance the mass has travelled along the tube.

Figure 1: A mass m in a tube of length ℓ and mass M .

a) Find the equations of motion for θ and x and write them in terms of θ and η = x/ℓ
(the fraction of the distance along the cube).

[10 marks]

b) You probably see that these differential equations cannot be solved analytically.
What to do? A numerical solution is a possible strategy. Write a constructive program
in a language of your choice (Python, C++, Fortran, . . . ) without built-in functions or
unknown subroutine calls, that produce the value of η when the tube is vertical (θ = π/2).
Give this value of η for a few values of the mass ratio ζ ≡ m/M .

Hint: It is very useful, before writing the code or even before trying something ana-
lytically, to investigate with simple arguments whether η depends on ℓ or the acceleration
constant g.

[10 marks]

1



Solution

a) The inertial moment of the tube is 1
3
Mℓ2 as we can easily find. Adding up (rotational

and linear) kinetic and potential energies for both tube M and particle m, we find the
Lagrangian

L =
1

2

(
1

3
Mℓ2

)
θ̇2 +

(
1

2
mx2θ̇2 +

1

2
mẋ2

)
+mgx sin θ +Mg

(
ℓ

2

)
sin θ . (1)

Euler-Lagrange equations are then

d

dt

(
∂L
∂θ̇

)
=

∂L
∂θ

⇒ d

dt

(
1

3
Mℓ2θ̇ +mx2θ̇

)
=

(
mgx+

Mgℓ

2

)
cos θ

⇒
(
1

3
Mℓ2 +mx2

)
θ̈ + 2mxẋθ̇ =

(
mgx+

Mgℓ

2

)
cos θ , (2)

d

dt

(
∂L
∂ẋ

)
=

∂L
∂x

⇒ mẍ = mxθ̇2 +mg sin θ . (3)

In terms of η = x/ℓ, ζ = m/M and also g̃ = g/ℓ equations of motion become

(1 + 3ζη2)θ̈ =

(
3ζg̃η +

3

2
g̃

)
cos θ − 6ζηη̇θ̇ , (4)

η̈ = ηθ̇2 + g̃ sin θ . (5)

b) The coupled system of non-linear differential equations (4) and (5) are impossible
to be solved analytically. I give a Python program below (trivially adapted to any other
computer language) where it calculates η when the tube is vertical, i.e. θ = π/2 for the
case of adjustable ζ-values (I will set ζ = 1 for the intended purpose).

Before doing so, here is an observation: Since η is dimensionless, it cannot depend on
g, the only parameter that contains time. Nor, it depends on ℓ, the only length parameter
encountered in the problem. The only dimensionless parameter is the ratio between mass
scales m and M , that is η can only be a function of ζ = m/M .

1

2 import math

3

4 l = 1. # length of the tube

5 g = 10. # acceleration constant

6 n = 0. #value of eta

7 n1 =0. #initial value of dot(eta)

8 q = 0. #initial theta value

9 q1 = 0. #initial dot(theta) value

10 e = 0.0001 # small time increment

11 gt= g/l #value of gtilde = g/l

12 z=1. #valuue of zeta=m/M
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13 while q <1.57079 : # do the following loop until angle theta =pi/2

14 n2=n*q1**2 + gt*math.sin(q) #E-L eq.(5)

15 q2 =((3*z*gt*n+3*gt/2)*math.cos(q) - 6*z*n*n1*q1)/(1+3*z*n**2) #E_L eq

.(4)

16 n=n+e*n1 # n changes slightly

17 n1=n1+e*n2 # n1 changes

18 q=q+e*q1 # q changes slightly

19 q1=q1+e*q2 # q1 changes

20

21

22 print(n) # print the value of eta when the tube is vertical

Listing 1: A suggestive Python code for the problem ”Mass in a tube”.

If computers are not allowed in class, marking this problem finishes here. It is interesting,
however, to write the code on your computer and check if your physics expectations meet.
You will find

η(θ = π/2) = 0.378 . (6)

If you change the length of the tube value to say, ℓ = 1000 you must see no change (up
to the increment value you have chosen) according to the dimensional analysis argument
above. Here are some results for variables η with different values of parameters ζ: Had we

ζ η (θ = π/2)
0.1 0.352
1 0.378
10 0.872
11.3 1.004
20 3.290
50 18893027

had extended the tube, we see that when ζ → ∞ then as well η → ∞. In this case, the
“heavy” mass m drops quickly down and forces the tube to swing quickly to vertical.

2. α Spectroscopy of Super-Heavy Nuclei

The energy spectrum of the α particles emitted from the decay of 251Fm is depicted in
Figure below.

a) Determine the Q value of the decay processes populating the ground state of the
daughter nucleus, as well as the first two excited states. Assume that the parent nuclei
are initially at rest. Determine the energies of the first two excited states of the daughter
nucleus. The energies of the first three groups of α particles are given as α1= 7305 keV ,
α2 = 7251 keV , α3 = 7184 keV

[5 marks]
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b) Based on the decay spectrum, determine the angular momentum assignments of the
ground and first two excited states of the daughter nucleus. Assume that the daughter
nucleus is a deformed nucleus and that the ground state, as well as the first two excited
states, belong to the same rotational band.

[15 marks]

Solution

a)

Conservation of momentum:

P⃗in = P⃗fin = 0 (7)

Conservation of mass/energy:

mpc
2 = mdc

2 + Td + Tα +mαc
2 (8)

Q = mpc
2 −mdc

2 −mαc
2 (9)
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No need for relativistic equations (denoting P the momentum):

Q =
P 2

2md

+
P 2

2mα

(10)

Q =
P 2

2mα

(
mα

md

+ 1

)
(11)

For the kinetic energies of the three α groups (α1= 7305 keV , α2 = 7251 keV , α3 =
7184 keV ), and by considering the masses multiples of the atomic mass unit, we get:

Q0 = 7.305

(
4

247
+ 1

)
= 7423.3 keV (12)

Q1 = 7251

(
4

247
+ 1

)
= 7368.4 keV (13)

Q2 = 7184

(
4

247
+ 1

)
= 7300.3 keV (14)

∆E1−0 = Q0 −Q1 = 55 keV (15)

∆E2−0 = Q0 −Q2 = 123 keV (16)

b) For the same rotational band the energy levels should follow:

En =
ℏ2

2I
j(j + 1) (17)

We consider:

a)The ground, the first, and second excited states of the daughter nucleus belong to the
same rotational band.

b) k the angular momentum of the ground state.

Accordingly, the ratio of the energy difference between these levels is:

∆E2−0

∆E1−0

=
ℏ2
2I
(k + 2)(k + 3)− ℏ2

2I
k(k + 1)

ℏ2
2I
(k + 1)(k + 2)− ℏ2

2I
k(k + 1)

(18)

Taking into account the results of the energy level differences as obtained from a), we
have:
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∆E2−0

∆E1−0

=
4k + 6

2k + 2
=

123

55
(19)

From the previous equation it is concluded that:

k ≃ 3.2 (20)

The angular momentum of the ground state of daughter nucleus (odd-even nucleus)
should be a half integer. Therefore:

k = 3.5 =
7

2
(21)

Accordingly, we conclude that the angular momentum assignments of the ground and
first two excited states of the daughter nucleus 247Cf are: 7/2, 9/2, 11/2.

This result aligns well with the experimental observations.

3. Coaxial Conductor

Calculate the resistance between the center conductor of radius a and the coaxial conductor
of radius b for a cylinder of length l ≫ b, which is filled with a dielectric of permittivity ε
and conductivity σ (10 pts). Also calculate the capacitance between the inner and outer
conductors (10 pts).

Solution

1. Electric Field Calculation

Let V be the voltage difference between the inner and outer conductors. In the dielectric
medium:

• The electric displacement field D⃗ is related to the electric field E⃗ by D⃗ = εE⃗

• Due to cylindrical symmetry, fields depend only on radial distance r

• From Gauss’s law:
∮
D⃗ · dA⃗ = Qenclosed
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For a cylindrical Gaussian surface of radius r and length l:∮
D⃗ · dA⃗ = D(r)(2πrl) = Qenclosed (22)

εE(r)(2πrl) = Qenclosed (23)

Therefore:

E(r) =
Qenclosed

2πrlε
(24)

The potential difference V is:

V = −
∫ b

a

E⃗ · dr⃗ = −
∫ b

a

Qenclosed

2πrlε
dr (25)

V = −Qenclosed

2πlε
[ln(r)]ba (26)

V = −Qenclosed

2πlε
ln(b/a) (27)

Solving for Qenclosed:

Qenclosed = − 2πlεV

ln(b/a)
(28)

Therefore, the electric field is:

E⃗(r) =
V

r ln(b/a)
êr (29)

2. Current and Resistance Calculation

Using Ohm’s law in the dielectric medium, J⃗ = σE⃗:

J⃗ = σ
V

r ln(b/a)
êr (30)

The total current through any cylindrical surface is:

I =

∮
J⃗ · dA⃗ = σ

V

r ln(b/a)
(2πrl) (31)

I =
2πσlV

ln(b/a)
(32)

The resistance is:

R =
V

I
=

ln(b/a)

2πlσ
(33)
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3. Capacitance Calculation

At the surface of the inner conductor, the boundary condition gives:

D⃗ = ωêr (34)

where ω is the surface charge density.

Therefore:
εE(a) = ω (35)

Substituting the electric field at r = a:

ω =
εV

a ln(b/a)
(36)

The total charge on the inner conductor is:

Q = ω(2πal) =
2πεlV

ln(b/a)
(37)

The capacitance is thus:

C =
Q

V
=

2πεl

ln(b/a)
(38)

Physical Interpretation

The presence of the dielectric:

• Modifies the electric field through ε

• Affects the charge distribution on conductors

• Increases the capacitance by a factor of ε/ε0 compared to vacuum

• Provides a conduction path that determines resistance through σ

The solution is valid for l ≫ b, allowing us to ignore edge effects.

4. Stretching a Rubber Bar

Rubber is an amorphous, lightly cross-linked polymer whose macromolecules are long chains
of isoprene molecules held together by carbon-carbon bonds. To construct a toy model for
rubber, we start with a single chain consisting of n links, with each link having length ℓ (for
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now, picture a link as a thin rigid rod). Let r = rn be the end-to-end vector connecting the
start of the first link to the end of the n-th link. In a real polymer, the direction of each
link can vary in 3-dimensional space, leading to highly complicated entangled shapes. For
simplicity, we will start by considering the toy model of a one-dimensional such chain.

1. Calculate the entropy Schain(n, x, ℓ) of a single such one-dimensional chain, where x
is the end-point of the chain (assuming it started at the origin). You may apply
Stirling’s approximation as needed.

[5 pts]

2. Construct the one-dimensional probability density P (x) for the chain’s endpoint being
x. From this, derive the 3-dimensional probability density P (x, y, z) to have a 3-
dimensional chain end within an infinitesimal volume d3x around (x, y, z), by assuming
that the “random walks” (traced by the chain’s shape) in different dimensions are
uncorrelated and isotropic. Use your result to calculate the total entropy Spoly of a
polymer consisting of N chains.

[5 pts]

3. One of the well-known properties of rubber is its elasticity. Take a rubber bar of square
cross section, with base width w and height L and suppose we slowly (and reversibly)
apply a stretching force along its long side, so that L → L′ = λL, where λ > 1 is the
dimensionless stretch factor. Taking into account rubber’s incompressibility (i.e. the
volume of the bar is preserved under the stretch), calculate the entropy change of the
polymer as a function of λ. Is the sign of your result reasonable? Provide a physical
interpretation. Assume that no chains break or glue together under the deformation.

[5 pts]

4. For an ideal polymer, such as the one we are modelling here, there is no interaction
between the chains and the elastic force is entropic. Use this fact, together with
thermodynamical arguments to calculate the elastic force σ = σ(λ) of the rubber bar.

[5 pts]

Solution

1. A 1-dimensional chain starting at 0 and ending at position x = xn, can be constructed
using n links by combining n+ links going to the right and n− = n− n+ links going to the
left. Since the link length is ℓ, this means that x = (n+ − n−)ℓ. Clearly, these equations
determine

n± =
n

2

(
1± x

nℓ

)
. (39)

The entropy of the chain Schain(n, x, ℓ) = k log Ω, where Ω = Ω(n, x, ℓ) is the number of
ways in which the n links can be arranged to form the chain. This is equal to the number
of ways we can choose n+ links out of the total number of links, namely Ω = n!/(n+!n−!).
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We next calculate the entropy

Schain = k log n!− k log n+!− k log n−!

≃ nk log 2− nk

2

[
(1 + x

nℓ
) log(1 + x

nℓ
) + (1− x

nℓ
) log(1− x

nℓ
)
]

≃ nk

(
log 2− x2

2n2ℓ2

)
,

(40)

where we used Stirling’s approximation a! = a log a−a for large a, and the Taylor expansion
of the logarithm log(1± x) ≃ ±x− x2/2.

2. The probability density of having a chain ending at x is proportional to the number
of microstates

P (x) = Ae−
x2

2nℓ2 ∼ eSchain(x)/k . (41)

The normalisation constant is determined from the requirement
∫∞
−∞ dxP (x) = 1 and found

to be
A =

√
2πnℓ2 . (42)

Therefore, the 1-dimensional probability element is

P (x)dx =
1√

2πnℓ2
e−

x2

2nℓ2 dx . (43)

Since the ‘random walks’ of the chain in the x, y, z directions are uncorrelated, the 3-
dimensional probability element is

P (x, y, z)d3x =
1

√
nxnynz

1

(2πℓ2)3/2
e−

(x/nx)2+(y/ny)2+(z/nz)
2

2ℓ2 d3x , (44)

where nx, ny, nz are the number of chain links in the x, y, z directions, respectively. Ob-
viously, nx + ny + nz = n. Isotropy then implies nx = ny = nz = n/3. As a result, the
3-dimensional probability is

P (x, y, z)d3x =

(
3

2πnℓ2

)3/2

e−
3
2

x2+y2+z2

nℓ2 d3x . (45)

From this, we infer that the entropy of a 3-dimensional chain is

Schain = Schain(x) + Schain(y) + Schain(z) = nk

(
log 2− 3

2

(x2 + y2 + z2)

n2ℓ2

)
. (46)

If there are N chains in total, the number of chains with endpoints between r and r+dr
is

dN = NP (x, y, z)d3x . (47)

We may now calculate the total entropy of the polymer as

Spoly =

∫
dN Schain = N

∫
d3x SchainP (x, y, z) = N

〈
nk log 2− 3

2
nk

x2 + y2 + z2

n2ℓ2

〉
,

(48)

10



where in the last equality we have conveniently expressed the result in terms of the average
with respect to a single (3-dimensional) chain. This can be written as

Spoly = Nnk log 2− 3

2
Nnk

⟨x2⟩+ ⟨y2⟩+ ⟨z2⟩
n2ℓ2

. (49)

For the mean squared positions, we have

⟨x2⟩ = ⟨y2⟩ = ⟨z2⟩ = 1

3
⟨r2⟩ = 1

3

(
3

2πnℓ2

)3/2

4π

∫ ∞

0

dr r4 e−
3r2

2nℓ2 =
1

3
nℓ2 . (50)

The fact that
√

⟨r2⟩ =
√
nℓ is basically the well-known result of Brownian motion, where

the root mean square distance grows with the square root of time (here, the role of time is
played by the number of steps n of the random walk). Plugging this into the expression for
the entropy, we find

Spoly = Nnk log 2− 3

2
Nk . (51)

3. Since the volume of the rubber bar is preserved under the stretch, the sides of the
bar satisfy L′(w′)2 = Lw2. Therefore, if the long side scales as L′ = λL, then the sides
of the base should scale as w′ = w/

√
λ. The number of chains N does not change under

stretching and we assume no chains break or glue into longer ones. The stretching of the
rod will cause a corresponding straightening of the chains, meaning that the entropy of a
chain will be

S ′
chain(λ) = nk log 2− 3

2
nk

λ2x2 + (y2 + z2)/λ

n2ℓ2
. (52)

As a result, the total entropy of the stretched polymer becomes

S ′
poly(λ) = Nnk log 2−3

2
Nnk

λ2⟨x2⟩+ (⟨y2⟩+ ⟨z2⟩)/λ
n2ℓ2

= Nnk log 2−1

2
Nk (λ2+2/λ) . (53)

The change in entropy due to the stretch is

∆Spoly = S ′
poly(λ)− S ′

poly(1) = −1

2
Nk

(
λ2 +

2

λ
− 3

)
. (54)

The quantity in the brackets is positive and monotonically increasing with λ. Therefore, the
change of entropy is negative and decreases as we stretch the rubber bar. This is expected,
since the stretching of the rubber bar aligns the chains in the direction of the stretch and
disentangles them. As the chains are stretched, the number of microstates drops and the
system becomes less disordered.

4. The first law of thermodynamics for the rubber bar is dU = δQ+ σdL, where δQ is
the heat received by the system and σdL is the work done on the rubber bar by the tensile
force. Since we assume that the process is reversible, the second law of thermodynamics
allows us to write δQ = TdS. In terms of the free energy F = U − TS, we then write

dF = −SdT + σdL . (55)
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Since F is a state function, we now have

σ =
∂F

∂L
=

∂U

∂L
− T

∂S

∂L
. (56)

However, for an ideal polymer there is no interaction between the chains and, therefore,
the internal energy U = U(T ) is a function of temperature alone. As a result, ∂U/∂L = 0
and the elastic force is entirely entropic:

σ = −T
∂S

∂L
. (57)

The situation parallels the case of the ideal gas where the molecules are non-interacting, the
internal energy is a function of the temperature alone (and not volume), and the pressure
that develops is entirely due to entropy variations.

Using our result for the polymer entropy from Question 3, we may now calculate the
elastic force

σ(λ) =
NkT

L0

(
λ− 1

λ2

)
, (58)

where L0 is the original (unstretched) length of the rubber bar.

5. Measurement of forces at the molecular level

Kevlar is a tough polymeric fiber with a chemical composition shown in Fig. 2a. When me-
chanical stress is applied to the material, the center wavenumber of some Raman scattering
bands is shifted. This is particularly evident in bands corresponding to vibrations of cova-
lent bonds along the main chain, such as the C-C bond of the aromatic ring. This vibration
is centered at 1611 cm−1 when no force is applied, but is shifted to lower wavenumber under
tensile stress.

a) Discuss briefly the origin of the effect shown in Fig. 2b. Hint: How does an external
force change the energy landscape? (5 pts)

b) Calculate the cross-sectional area per polymer chain. The bulk density of Kevlar is
ρ = 1.44 g cm−3 . Note that most C and H atoms are not shown explicitly in Fig. 2a.
What force is applied to a single chain when the macroscopic stress is equal to σ = 1 GPa?
Avogadro’s constant NA = 6.022 · 1023 mol−1 . (5 pts)

c) Find the Morse potential that best describes the C-C bond in the aromatic ring.
Its equilibrium length is R = 140 pm. For calculations, you can assume that this bond

is isolated. The form of the Morse potential is U(x) = D
(
1− e−a(x−R)

)2
, where D, a are

the parameters to be determined. Hint: Fig. 2b shows only the linear regime of the ν̄(σ)
dependence. (10 pts)
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Figure 2: (a) Molecular structure of Kevlar. The length of the repeating unit is equal to
1.290 nm. A strong Raman band at 1611 cm−1 is attributed mainly to the stretching of
aromatic ring C-C bonds shown in blue. (b) Raman wavenumber shift as a function of
applied stress.

Solution

a) The origin of the effect is the anharmonicity of molecular bonds. The spring constant of
the bond can be determined by the second derivative of U(x). External forces add energy
Uext = −Fx to this landscape. Under force, the equilibrium position is shifted to a longer
bond length, where the curvature of the landscape U(x) is different.

b) We can calculate the mass and the volume of the repeating unit (thicker lines in Fig.
2a). The length is known, so we get the cross-sectional area. The repeating unit includes
14 carbon, 2 nitrogen, 2 oxygen, and 10 hydrogen atoms. Their total mass is approx.
mU = (14∗12+2∗14+2∗16+10∗1) g mol−1 / NA ≈ 3.95 ·10−22 g. The volume occupied
by the repeating unit is VU = mU/ρ = 2.74 · 10−28 m3. Thus, the cross-sectional area per
chain is Achain = VU/(1.290 nm) = 2.13 · 10−19 m2. The force per chain at σ = 1 GPa is
F = σAchain = 2.13 · 10−10 N.

c) It is possible to solve the Schrödinger equation for the Morse potential analytically
and apply perturbation theory, but it is sufficient to treat the problem classically.

The maximum shift of vibrational frequency is about 2-3 orders of magnitude lower
than the unperturbed frequency, and the dependence on stress is linear. Thus, first-order
approximations can be made, greatly simplifying the solution.

The C-C bond of the ring can be treated as a system of two equal masses, each equal
to mC = 12 g mol−1/NA = 1.99 · 10−26 kg. The reduced mass of the system is µ = mC/2 =
9.96 · 10−27 kg. The effective force constant of the bond is

k =
∂2U

∂x2

∣∣∣∣
∂U
∂x

=0

(59)
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The respective wavenumber of the Raman band is

ν̄ =
ν

c
=

1

2πc

√
k

µ
(60)

In general,

∂2U

∂x2
= 2Da2e−a(x−R)

(
2e−a(x−R) − 1

)
(61)

At F = 0 we have ∂U/∂x = 0 ⇒ x = R and k = 2Da2. Thus

Da2 = 4π2c2ν̄2
0µ (62)

.

The dependence ν̄(σ) will give the second relation between D, a. Setting ∂Utot

∂x
= 0 gives

e−a(x−R) =
1

2
+

1

2

√
1− 2F

Da
≈ 1

2
+

1

2

(
1− F

Da

)
= 1− F

2Da
(63)

Substituting into the above equations yields

k ≈ 2Da2
(
1− F

2Da

)(
1− F

Da

)
≈ 2Da2

(
1− 3F

2Da

)
(64)

and, finally,

ν̄ =
1

2πc
√
µ

√
2Da2

(
1− 3F

2Da

)
≈ a

√
2D

2πc
√
µ

(
1− 3F

4Da

)
= ν̄0

(
1− 3F

4Da

)
(65)

This result explains the observed linear dependence ν̄(σ).

∆ν̄ = −ν̄0
3F

4Da
(66)

The final result is

D =
9

64π2c2µ

(
F

∆ν̄

)2

(67)

and

a =
16

3
π2c2ν̄0µ

∆ν̄

F
(68)

The force exerted on this bond is half of that in the previous question, because the
aromatic ring contains two such bonds connected in parallel. The values of the parameters
are D = 1.07 · 10−18 J = 6.7 eV and a = 29.2 nm−1. Other experimental methods yield
more accurate results, but these values have the correct order of magnitude, demonstrating
the effect of bond anharmonicity.
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